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@ The channel is additive with Gaussian noise
Yi = T; + 2,

and an average power constraint % St Elz? <P
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The Gaussian channel
@ If the noise is i.i.d. (AWGN)

1. Feedback does not increase the capacity
P
Cpp(P) =C(P) =maxI(X;Y) =0.5log <1 + Z)

2. Feedback improves the probability of error

@ If {z} is noti.i.d.: this is a channel with memory:
- The encoder knows z'~! and can predict z;

- The optimal input distribution is not i.i.d.

1. Feedback increases the channel capacity

- First works in (Butman 67,69,76) for AR noise
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General capacity expression

Theorem (Cover, Pombra 89)
The feedback capacity of Gaussian channels is

1 det £
Cp(P) = lim — max log ———~+Z
M 20 BEY 18 )

where the nth maximization is over
X"=BZ"+V"
with B being a strictly causal operator, V" is a Gaussian

process and

lnEt<p
n

@ For afixed n, it is a convex program (Ordentlich, Boyd 94)
@ Non-trivial to compute the limit
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The control approach

@ Yang-Kavcic-Tatikonda (2007) derive an MDP formulation
- The MDP state is a covariance matrix
@ For first-order ARMA,

Zi+ BZ; 1 =U; +alU;_1, with U; ~ N(O, 1) (2)
they demonstrated the lower bound
Crp(P) > —log xo,

and conjectured it to be the feedback capacity where z is
the positive root of 1‘?;2 = Eiigggz with o = sign(s — «)
@ Kim (2006) proves their conjecture for 8 =0
@ Kim (2009) proves their conjecture for |5| < 1,|a] < 1 via
frequency domain formula of general stationary noise
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Our setting

@ The channel is MIMO
yi = Ax; + 2,
where A € R™*P js known.

@ The noise is generated by a state-space

Si+1 = FSZ‘ + GWz
z; = Hs; + v;,

W L
LT v
- The initial state s; ~ N (0, ¥y)9)
@ If F'is stable, it is the stationary case in (Kim 09)

where (w;, v;) ~ N(0, ( >) is an i.i.d. sequence
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Example: state space for ARMA(1)

@ First-order ARMA noise
Zi+BZ;i 1 =U;+aU;_1, withU; ~ N(O, 1)
can be represented as

Sig1=—pSi+ Ui
Zi = (= B)S; + Ui,

- Can be verified via Z-transform T'(z) = 1+ (a— ) (z + 3) !
@ Similar representation for any ARMA process of order &

@ The value of 8 determines the (asymptotic) stationarity
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Reminder: Kalman filter

@ Define

éi = E[S,L| Zi_l]

Y, = cov(s; — §;).
@ The (time-invariant) Kalman filter is given by
Sit1 = F8; +Kp(z; —H 8;), 3)

where K, = (FXH? + GL)U~tand ¥ = HXHT + V.
@ The error covariance is the solution to the Riccati equation

S =FSFT + W - KUK,
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Main result

The feedback capacity of the MIMO Gaussian channel is

1 1
C/b(P) = max = log det(¥y) — = log det(¥)
ner 2 2

Uy = ATIAT + HSHT + ATHT + HTTAT + @

st (H F) =0, Tr(IT) < P,

7 3
T T ¥ TAT 17T
<FEF +KpT\1zKp ~¥ FI'A" + FXH +pr1/) -0
() Uy
The channel: The noise:
Si+1 = FSZ' + GWZ
yi = Axi+ 2 z; = Hs; +v;

Sabag, Kostina , Hassibi Feedback Capacity of MIMO Gaussian channels



The linear matrix inequalities (LMIs)

@ The decision variable II is the inputs covariance:
- The constraint Tr(II) < P is the power constraint

- The first LMI
II T
~ ) =
(7 5) =0

is a verification that X; forms a covariance matrix with a
correlated signal
@ The second LMI

(FiFT + K, 9K —% FTTAT + FyOT + quf) <0
)" Ty B
corresponds to a Riccati inequality
S =X FSFT + KUK
—(FTTAT + FRHT + K,0) 0 Y (FTTAT + FSHT + K,0)7
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Main results: a scalar channel

The feedback capacity of the scalar Gaussian channel is

17T T
Cfb(P):maX%bg <1+P+Hzf; +2TH )

P T
L ~ | =
st (5 9w

FSFT + KUK - FTT+ FSHT + K0 \ 0
(FTT + FXHT + K,9)" P+ HSHT + 2THT +w) =7
where K, and ¥ are constants.
e If H =0, the capacity is C(P) = log (1+ £).

-2
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The moving average noise

Consider Z; = U; + aU;_; with o € R and U; ~ N(0,1)

Theorem (Alternative expression for (Kim, 06))
The feedback capacity of first-order MA noise process is

Cpy(P) = %log(l + SNR), (4)

where SNR is the positive root of the polynomial
2
SNR = (VP + Jaly/ 558 )

@ Proof: easy to show that the Schur complement of both
LMIs equals zero. Substitute these equations into the
objective.

@ The fixed-point polynomial is different from (Kim 06)
- However, their positive roots coincide
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Problem structure: cascaded filtering problem

Z;
Enc. AXiy(WYisl pec,
Yi—1
Encoder Decoder
Information | (x*~1 y*~!) — 2zt y'~!
Estimation 8 = E[si| 271 s; = E[5 |y
State-space | Sitt T ISitOWi | S = FSitK, e
z; = Hs; + v, Y =X +H 8; +(z; —H 8;),
Innovation | ¥; =cov(z; — HS;)
Objective:

\IJYJ' S COV(yZ- — Hél)

h(Y; YY) — h(Z| Zi—1) = 5 (log det(Py,;) — log det(¥;))
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The optimal policy

For each n, it is sufficient to optimize with inputs of the form

A~

XZZinj(él—éz)‘sz, 1=1,....n
where:
@ m; ~ N(0, M;) is independent of (x'~!,y*~1)
o 3! is the pseudo-inverse of 3; = cov (8; — §;)
@ I'; is a matrix that satisfies
(I —-318) =0
o the input satisfies Y7, Tr(;SITT + M;) < nP

- Similar policy structures in (Yang et al. 07), (Kim 09), (Gattami
19), (Charalmbous et al., 20)
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Auto regressive (AR) noise

@ AR noise
Zi+BZi1 =U;, Uy~ N(0,1)

and power constraint P = 1

=—Theorem 1

)
T

= (Kim 09) expression
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The AR noise - contd.

@ The optimal inputs are x; = I'S)T(8; — §;) + m;
- The power of each component

'i'he par;meter 5
@ Therange § € [0, 1] shows an error in (Gattami 19)
@ Forlarge g, i.i.d. inputs become optimal
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SCOP formulation

Lemma (Sequential convex-optimization problem)

The n-letter capacity can be bounded as

N {0300, 41},

I, T, 1 —
i ) =0, =) Te(In) < P
i <FtT Et>_ ’ n; () <

FY,FT 4+ Ky UKL, — S0y Ky,tqjy,t) -
T Y
Uy Ky, Py

1 n
Cn(P) < max — Z log det(¥y;) — log det(¥;)
(e

where the LMIs hold fort = 1,...,n and ¥; = 0.
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Proof outline

@ The argument of the objective is

- Define Il; 2 M; + ;317
- The objective ¥y-; is now a linear function
- Reduce the variable M;

@ The Schur complement transformation (e.g. Boyd 94)

In; = 0,317 <HZ- FZ-)

I — %18 =0 75,

)

@ Relax Riccati recursion to a matrix inequality + Schur
complement transformation
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Broader view - Directed information
The optimal directed information:
I(X" =y N) =Y 1(xX5 vy
=1

_ZIXz Q XL 1 Yz 1) Y‘Yz 1)

- ZI(XZ-, Si(XTLYTh vyt
i=1

—ZIX,L,S(XZ 1 Yz 1) ‘é(}ﬂ 1) yi— 1)
=1

NnI(X,S;Y\é)

@ The variable S;(X?~!, Y1) serves as a state
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Conclusions

@ This is the most general formulation with computable
solution:

1. General state-space
2. Noise may be non-stationary
3. MIMO channels

@ Sequential structures also exploited in (Tanaka, Kim,
Parillo, Mitter 16), (Sabag, Tian, Kostina, Hassibi 20)

@ Ongoing work:
- Partial results on an optimal coding scheme
(a la Schalkwijk-Kailath)

Thank you for your attention!
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